
Designation: E2560 − 23

Standard Specification for

Data Format for Pavement Profile1

This standard is issued under the fixed designation E2560; the number immediately following the designation indicates the year of

original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A

superscript epsilon (´) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This specification describes a data file format for pave-

ment profile.

1.2 This specification describes the variables and sizes of all

data that will be stored in the file. The file is in binary format

and is fully documented in this specification.

1.3 This specification is designed to be independent of

hardware platforms, computer languages, and operating sys-

tems (OS).

1.4 This standard does not purport to address all of the

safety concerns, if any, associated with its use. It is the

responsibility of the user of this standard to establish appro-

priate safety, health, and environmental practices and deter-

mine the applicability of regulatory limitations prior to use.

1.5 This international standard was developed in accor-

dance with internationally recognized principles on standard-

ization established in the Decision on Principles for the

Development of International Standards, Guides and Recom-

mendations issued by the World Trade Organization Technical

Barriers to Trade (TBT) Committee.

2. Referenced Documents

2.1 ASTM Standards:2

E867 Terminology Relating to Vehicle-Pavement Systems

2.2 IEEE Standards:3

IEEE 754–2008 (2008) Floating-Point Arithmetic

3. Terminology

3.1 Definitions:

3.1.1 Terminology used in this specification conforms to the

definitions included in Terminology E867.

3.2 Definitions of Terms Specific to This Standard:

3.2.1 signed—integer capable of representing negative val-

ues.

3.2.2 unsigned—integer only capable of representing non-

negative values.

3.2.3 int8—data type for an 8-bit, unsigned integer.

3.2.4 int32—data type for a 32-bit, signed integer.

3.2.5 single—data type for a 32-bit, signed real number,

such as single-precision IEEE floating point.

3.2.6 string—data type for a variable-length ASCII string.

No null character is included at the end of the string. A separate

field defines the length of the string.

3.2.7 3-byte string—an ASCII string of three characters in

length. No null character is included at the end of the string.

3.2.8 4-byte string—an ASCII string of four characters in

length. No null character is included at the end of the string.

3.2.9 8-byte string—an ASCII string of eight characters in

length. No null character is included at the end of the string.

3.2.10 array (numeric data type)—sequence of data of the

specified numeric data type. Only the values are stored; no

information about the array is stored.

3.2.11 array (string)—ASCII strings separated by a tab.

There is no tab after the last string.

3.2.12 double—data type for a 64-bit, signed real number,

such as double-precision IEEE floating point.

3.3 Symbols:

3.3.1 n—total channels of elevation data.

3.3.2 m—total number of test locations (that is, data points).

4. Profile Data Specifications

4.1 File Structure:

4.1.1 The general file structure is divided into five sections:

(1) File Header, (2) Metadata, (3) Longitudinal Profile Data,

(4) Transverse Profile Data, and (5) File Trailer. The five

sections are stored sequentially. (See Fig. 1.)

4.1.2 Each of these portions of the file is described in the

following sections, as well as the data types and other

descriptors that will be required by the file. The data will be

written to the file sequentially, with the offsets listed in the file

header as guides to find various portions of the file. It is

1 This specification is under the jurisdiction of ASTM Committee E17 on Vehicle

- Pavement Systems and is the direct responsibility of Subcommittee E17.31 on

Methods for Measuring Profile and Roughness.

Current edition approved May 1, 2023. Published May 2023. Originally

approved in 2007. Last previous edition approved in 2017 as E2560 – 17. DOI:

10.1520/E2560-23.
2 For referenced ASTM standards, visit the ASTM website, www.astm.org, or

contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM

Standards volume information, refer to the standard’s Document Summary page on

the ASTM website.
3 Available from Institute of Electrical and Electronics Engineers, Inc. (IEEE),

445 Hoes Ln., P.O. Box 1331, Piscataway, NJ 08854-1331, http://www.ieee.org.

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States

This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the
Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

1



important to note that all offsets are relative to the beginning of

the file. Because offset values may not be known at the time of

writing the file header, these values need not be written.

However, spare space must still be reserved for the offsets so

that values can be updated when known.

4.2 File Header—The file header contains information per-

taining to the data file type, software version information, and

information about the data contained (Table 1).

4.2.1 Version 1.06 introduces support for double-precision

numbers. If a file does not use double-precision numbers, then

a version of 1.05 should be used for better compatibility.

4.3 Metadata:

4.3.1 Metadata is structured, descriptive information about a

resource or data about data. Using metadata in the binary file

format will allow generic operation on the data information

about which the reader software has no prior knowledge. Also,

metadata will allow scalable evolution of the data description

without requiring simultaneous upgrades to all reader software.

4.3.2 The first value in the metadata portion will provide the

number of metadata entries (MDE) (Table 2).

Table 3 shows the information required to construct an

appropriate MDE.

4.3.3 The metadata tags are listed in Table 4, and can be

used in any number or order. If no metadata tags exist, the

number of MDEs = 0.

4.3.4 The names of the standard metadata entries (see Table

3) are not stored in the metadata entry to conserve space and,

more importantly, to allow for localization. That is, the file is

not tied to one written language. User-defined metadata entries

cannot be arrays, and the data type is always String.

4.3.5 The storage convention for empty arrays is to store a

one-byte value of the same data type as the array. For example,

an array of singles with no elements would store a value of 0.

4.4 Longitudinal Profile Data:

4.4.1 There are two ways to store the profile data: location-

wise and array-wise. The first method is appropriate for data

recording during profile data collection to prevent data loss,

while the other is appropriate for post-processing to speed up

software reading and writing.

4.4.2 If the data storage format, from metadata tag number

522 specifies location-wise storage, the longitudinal data will

be stored as a sequence of current longitudinal distance

followed by corresponding elevations of longitudinal sensors at

this location, beginning at the left side of the vehicle. The next

block of storage will store longitudinal distance and all

elevation data for the next location, and so on. However, the

location may not need to be stored if a specific data interval is

given. (See Fig. 2.)

4.4.2.1 In general, if a location and elevation channels are

recorded for each test location, every set of n+1 Singles (one

distance data and n channels of elevation data) will be read as

one profile location. If a specific data interval is included in the

metadata, only n Singles will be read for each location. For

example, if a standard interval exists and a single channel of

FIG. 1 Layout of the File Structure

TABLE 1 File Header

Variable Name Data Type Data Default Value

Signature 4-byte String Identifies file as being written in the Standard

Pavement Profile Format

“SPPF”

Version 4-byte String Identifies the version number of the file format.

This number is incremented if a change breaks

compatibility with previous versions of the

format.

“1.06”

SW version 8-byte String Identifier of the software that produced the file for example, “TGPA1.00”

Metadata offset Int32 Offset in bytes from the beginning of the file to

the beginning of the metadata

N/A

Longitudinal offset Int32 Offset in bytes from the beginning of the file to

the beginning of the longitudinal profile data

N/A

Transverse data offset Int32 Offset in bytes from the beginning of the file to

the beginning of the transverse profile data

N/A

TABLE 2 Metadata

Variable Name Data Type Data

Number of MDEs Int32 Number of MDEs

E2560 − 23

2



profile data is present, only one Single will be read for each

location. If two are present, then two Singles will be read per

point.

4.4.2.2 The location-wise format is recommended for pro-

filer data acquisition software. Storing the data after every

sampling location allows immediate writing to protect against

data loss and reduce memory requirements.

4.4.3 If the data storage format from metadata tag number

522 specifies array-wise storage, then the longitudinal data will

be stored as a sequence of the longitudinal distance array

followed by the elevation array of each longitudinal sensor,

beginning at the left side of the vehicle for all locations. (See

Fig. 3.)

4.4.3.1 In general, if distance and elevation channels are

recorded for each test location, n+1 sets (one distance channel

and n channels of elevation data) of m Singles will be stored in

sequence, where m is the number of points. If a specific data

interval is included in the metadata, only n sets of m Singles

will be stored sequentially, with distance being calculated from

the beginning of the test location by the software. For example,

if a standard interval exists and a single channel of profile data

is present, only one set of Singles will be stored. If two are

present, then two sets of m Singles will be stored sequentially.

4.4.3.2 This data format is recommended for software that

reads and writes the data during post-processing. Data stored as

one continuous array (array-wise) can be read and processed

much faster than the location-wise storage format.

4.5 Transverse Profile Data—The transverse elevation read-

ings are treated the same as the longitudinal data.

4.6 File Trailer—The file trailer is used to signal the end of

the file. (See Table 15.)

4.7 Event Markers—Event markers are defined by tags 528

to 531. These four arrays must all be of the same length.

4.8 Sections:

4.8.1 A section is defined by the use of two event markers.

The first event marker is the start location of the section and the

second event marker is the stop location. Special attention

should be paid to lead-in and lead-out event markers. These

two markers define the section that is bounded by the lead-in

and lead-out. Please note that they do not define the lead-in and

lead-out but the section between them. An example of this

follows:

4.8.1.1 A 1000-point profile has a lead-in of 50 points and a

lead-out of 40 points. Points 0 to 49 will constitute the lead-in,

so the event marker index for lead-in will be 50. Points 960 to

999 constitute the lead-out, so the event marker index for

lead-out will be 959.

4.8.2 Tags 526 and 527 were defined before the use of event

markers to define sections. These tags are no longer used.

4.8.3 Tag 531 is a recent addition to help ensure the integrity

of the sections, even if the event markers are not in order. The

tag is not required, but if present, it must be the same length as

tags 529 and 530. As this tag is new, there is no guarantee that

file readers will use it. When writing a file, ensure that events

are not sorted but rather stored in the order created. Use tag 531

only to verify the order. An example follows, containing two

sections and one event marker. The key for tags 311 and 531

are random ASCII strings that can be of any length. The only

constraint is that the values cannot be duplicated for a given

tag.

311 (Section keys) 57A9, GD89

312 (Section names) Section 1, Section 2

528 (Event marker index) 300, 350, 699, 800, 1000

529 (Event marker text) (blank), (blank), Event 1, (blank),

(blank),

530 (Event marker type) 2, 3, 1, 2, 3

531 (Event marker section-related key) 65UW, 65UW, 7H89, 8GJK

4.9 Geographical Data—Geographical coordinates can be

provided for the profile and events. Beginning with version

1.06 of this standard, coordinate data can be stored as low

precision or high precision. It is recommended to store data

with high precision once readers are readily available to

process this data. For brevity, this section refers only to the tags

that store low-precision data.

4.9.1 Tags 532, 533, and 534 are used to record the

geographical location of events. These values are not required

to be set, but the arrays must be the same size as the other event

marker arrays.

4.9.2 There are two ways to define the original geographical

coordinates associated with a profile. Tags 318 to 323 define

the start and stop coordinates for a profile. Or, tags 535 and 536

can be used by the profiler to record the geographical location

of multiple points in the profile. Tag 538 is also required to

associate each coordinate with a distance on the profile. Tag

541 is optional. Tags 539, 540, and 542 provide storage for a

processed route. With either of these methods, there may be too

little or too many data to create a route suitable for use.

Because converting these methods into a usable route can take

time, these tags allow for storing the processed route.

TABLE 3 Metadata Entries

Variable name Data type Data

Tag of MDE Int32 Metadata tag (see Table 4)

Data type of MDE Int32 Data type index of MDE (see Table 5)

Array size Int32 “-1” if not an array. “0” if the array is empty. Numbers greater than 0 specify the

number of elements in the array. Even though arrays of strings are stored

differently than other types of arrays, an array size should still be specified here.

Count Int32 For data types “String” and “Array (String),” count = the number of bytes in the

string. For other data types, count = 1.

Name length Int32 For metadata entries listed in Table 4, this is 0. For user-defined entries, this

value is the length of the name.

Name String Name of the metadata

MDE varies Information associated with the tag of MDE

E2560 − 23

3


